Using 31P-MRI of hydroxyapatite for bone attenuation correction in PET-MRI: proof of concept in the rodent brain
نویسندگان
چکیده
BACKGROUND The correction of γ-photon attenuation in PET-MRI remains a critical issue, especially for bone attenuation. This problem is of great importance for brain studies due to the density of the skull. Current techniques for skull attenuation correction (AC) provide indirect estimates of cortical bone density, leading to inaccurate estimates of brain activity. The purpose of this study was to develop an alternate method for bone attenuation correction based on NMR. The proposed approach relies on the detection of hydroxyapatite crystals by zero echo time (ZTE) MRI of 31P, providing individual and quantitative assessment of bone density. This work presents a proof of concept of this approach. The first step of the method is a calibration experiment to determine the conversion relationship between the 31P signal and the linear attenuation coefficient μ. Then 31P-ZTE was performed in vivo in rodent to estimate the μ-map of the skull. 18F-FDG PET data were acquired in the same animal and reconstructed with three different AC methods: 31P-based AC, AC neglecting the bone and the gold standard, CT-based AC, used to comparison for the other two methods. RESULTS The calibration experiment provided a conversion factor of 31P signal into μ. In vivo 31P-ZTE made it possible to acquire 3D images of the rat skull. Brain PET images showed underestimation of 18F activity in peripheral regions close to the skull when AC neglected the bone (as compared with CT-based AC). The use of 31P-derived μ-map for AC leads to increased peripheral activity, and therefore a global overestimation of brain 18F activity. CONCLUSIONS In vivo 31P-ZTE MRI of hydroxyapatite provides μ-map of the skull, which can be used for attenuation correction of 18F-FDG PET images. This study is limited by several intrinsic biases associated with the size of the rat brain, which are unlikely to affect human data on a clinical PET-MRI system.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملMRI-based attenuation correction for PET/MRI using ultrashort echo time sequences.
UNLABELLED One of the challenges in PET/MRI is the derivation of an attenuation map to correct the PET image for attenuation. Different methods have been suggested for deriving the attenuation map from an MR image. Because the low signal intensity of cortical bone on images acquired with conventional MRI sequences makes it difficult to detect this tissue type, these methods rely on some sort of...
متن کاملImpact of attenuation correction on clinical [18F]FDG brain PET in combined PET/MRI
BACKGROUND In PET/MRI, linear photon attenuation coefficients for attenuation correction (AC) cannot be directly derived, and cortical bone is, so far, usually not considered. This results in an underestimation of the average PET signal in PET/MRI. Recently introduced MR-AC methods predicting bone information from anatomic MRI or proton density-weighted zero-time imaging may solve this problem ...
متن کاملMagnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography.
Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in three-dimensional (3D) brain PET. We have devel...
متن کامل